Mapping of optical pathlength of human adult head at multi-wavelengths in near infrared spectroscopy.

نویسندگان

  • Akihisa Katagiri
  • Ippeita Dan
  • Daisuke Tuzuki
  • Masako Okamoto
  • Noriaki Yokose
  • Kouji Igarashi
  • Tatsuya Hoshino
  • Tokuo Fujiwara
  • Youichi Katayama
  • Yui Yamaguchi
  • Kaoru Sakatani
چکیده

Measurement of multichannel continuous-wave near-infrared spectroscopy (CW-NIRS) is dependent on the modified Beer-Lambert law, which includes optical pathlength (PL) as an essential parameter. PLs are known to differ across different head regions and different individuals, but the distribution of PLs for the whole head has not been evaluated so far. Thus, using time-resolved near-infrared spectroscopy (TR-NIRS), we measured the optical characteristics including PL, scattering coefficients (mu'(s)), and absorption coefficients (mu(a)) at three wavelengths (760, 800, 830 nm). Then, we constructed maps of these parameters on the subjects' head surface. While the PLs in nearby channels are similar, they differ depending on the regions of the head. The PLs in the region above the Sylvian fissure tended to be shorter than those in the other regions at all of the wavelengths. The difference in the distribution of PLs may be attributed to differences in tissue absorption and scattering properties. The current study suggests the importance of considering PL differences in interpreting functional data obtained by CW-NIRS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy.

We have used an intensity modulated optical spectrometer, which measures the phase shift across tissue experienced by intensity modulated near-infrared light, to determine the absolute optical pathlength through tissue. The instrument is portable and takes only 5 s to record pathlength at four wavelengths (690 nm, 744 nm, 807 nm and 832 nm). The absolute pathlength divided by the known spacing ...

متن کامل

Measurement of changes in optical pathlength through human muscle during cuff occlusion on the arm

Concentration changes of haemoglobin and cytochromes indicative of tissue perfusion and oxygenation can be quantitatively evaluated from near-infrared (NIR) measurements of absorption and optical pathlength through tissue. The accuracy of such measurements is limited as current bedside instrumentation cannot measure optical pathlength. Using a recently developed phase-resolved spectroscopic tec...

متن کامل

Effects of assuming constant optical scattering on haemoglobin concentration measurements using NIRS during a Valsalva Manoeuvre

Resolving for changes in concentration of tissue chromophores in the human adult brain with near-infrared spectroscopy has generally been based on the assumption that optical scattering and pathlength remain constant. We have used a novel hybrid optical spectrometer that combines multi-distance frequency and broadband systems to investigate the changes in scattering and pathlength during a Vals...

متن کامل

The effect of scalp ischaemia on measurement of cerebral blood volume by near-infrared spectroscopy.

Near-infrared spectroscopy (NIRS) is a noninvasive method of quantifying changes in cerebral haemodynamics from changes in the absorption of near-infrared light by oxyhaemoglobin and deoxyhaemoglobin. Measurement of neonatal cerebral blood volume (CBV) by NIRS was described in 1990 but it has been suggested that, in adults, scalp and skull blood content contribute a significant amount to the ce...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in experimental medicine and biology

دوره 662  شماره 

صفحات  -

تاریخ انتشار 2010